cours de topographie
4 مشترك
صفحة 1 من اصل 1
cours de topographie
Cours de Topographie et de Topométrie Chapitre 1
1. Introduction générale
La détermination des coordonnées et de diverses caractéristiques de points dans l’espace occupe une place importante dans la plupart des études à buts environnementaux. L’objectif de ces déterminations est généralement l’étude de l’aspect géographique des inter-relations entre les divers paramètres ou indicateurs relevés.
L’objet de ce cours est de balayer l’ensemble des méthodes et techniques à la disposition des bureaux d’études pour acquérir des informations à la fois géométriques et thématiques sur des objets tri-dimensionnels, qui composent nos paysages urbains et naturels. Il ne s’agit évidemment pas de former des topographes chevronnés, mais bien de donner une culture technique de base pour permettre d’une part un dialogue avec les professionnels et d’autre part, lorsque c’est nécessaire, la mise en oeuvre de protocoles de mesures simples.
Dans une première partie, nous rappellerons les notions géodésiques de base nécessaire à la compréhension de ce cours. Nous nous intéresserons ensuite aux méthodes de détermination directes de la topométrie classique : le nivellement direct et indirect, la triangulation et ses déclinaisons. Nous évoquerons rapidement les notions de précision et d’erreur de mesure. Enfin, nous présenterons les grandes caractéristiques du système GPS, ses capacités et ses modes d’exploitation. Nous terminerons par un aperçu rapide des méthodes de télédétection pour la génération de plans d’information géographique.
1.1. Une carte, un plan pour quoi?
La première question que doit se poser le cartographe ou le topographe est la suivante : quelles sont les informations que l’on souhaite obtenir du terrain ? Ceci doit permettre de définir le plus petit objet qui devra être visible sur la carte ou le plan, conditionnant ainsi l’échelle du document. On en détermine ainsi la teneur en information. Quelques exemples pour illustrer ces propos : nous partirons du principe que le plus petit détail aisément discernable, ainsi que la précision de report manuel, ne peuvent être inférieurs au dixième de millimètre. Ainsi, nous obtenons les relations suivantes entre les échelles classiques des documents et le type de détails représentés :
• Plan de maison → 1/50
• Plan de corps de rue (murs, égouts, trottoirs…) → 1/200 à 1/500
• Plan de lotissement, d’occupation des sols, cadastre → 1/1000 à 1/2000
L’échelle 1/mb d’un document est souvent qualifiée de deux façons différentes et contradictoires : l’une qualifie le coefficient d’échelle mb, et l’autre, le rapport d’échelle. Dans la suite, on se limitera à la seconde qui a le plus souvent cours dans les administrations et les fournisseurs de données.
1.2. Un panel de techniques et méthodes
Afin de décrire le terrain, on dispose de tout un panel de techniques et méthodes qu’il s’agit maintenant d’étudier, dans les grandes lignes. Le propos est, comme précisé plus haut d’en connaître les principes, le moyen de les mettre en oeuvre efficacement pour des travaux restreints, de savoir quand faire appel à un professionnel et d’avoir avec lui un langage commun. Nous verrons comment choisir l’appareil et la technique adaptés au problème qui se pose, aux contraintes de précision de l’étude.
- 4 -
Cours de Topographie et de Topométrie Chapitre 1
2. Notions géodésiques de base
Sans entrer excessivement dans les détails, nous rappelons ici les grandes notions de géodésie sur les systèmes, les surfaces de référence, les grandes familles de projection cartographique…
2.1. Quelques définitions
Les définitions qui suivent sont principalement tirées et inspirées de la notice technique de l’Institut Géographique National, intitulée : Notions géodésiques nécessaires au positionnement géographique (IGN, 2000).
2.1.1. Les paramètres essentiels
La mise en oeuvre de la géodésie et des techniques qui en sont dérivées nécessitent l’existence d’un jeu de paramètres essentiels :
• un système géodésique de référence
• un réseau géodésique de points matérialisés
2.1.1.1. Le système géodésique
Un système géodésique (ou datum géodésique) est un repère affine possédant les caractéristiques suivantes :
• le centre O est proche du centre des masses de la Terre
• l’axe OZ est proche de l’axe de rotation terrestre
• le plan OXZ est proche du plan méridien origine
Les coordonnées géodésiques du point M ne sont pas des valeurs objectives mais bien dépendantes d’un modèle théorique. Un point de la croûte terrestre est considéré fixe par rapport au système géodésique, malgré les petits déplacements qu’il peut subir (marée terrestre, surcharge océanique, mouvements tectoniques). Ainsi, il apparaît la nécessité de disposer d’une surface de référence : l’ellipsoïde.
2.1.1.2. Le réseau géodésique
Un réseau géodésique est un ensemble de points de la coûte terrestre (tels que des piliers, des bornes…) dont les coordonnées sont définies, estimées par rapport à un système géodésique. Plusieurs types de réseaux sont distingués :
• les réseaux planimétriques
• les réseaux de nivellement
• les réseaux tridimensionnels géocentriques
Pour résumer :
Avec le réseau, une réalisation géodésique nécessite donc la mise en oeuvre d’un système géodésique qui peut être résumé par l’ensemble des constantes et algorithmes qui doivent intervenir dans le processus d’estimation des coordonnées. (IGN, 2000)
- 5 -
Cours de Topographie et de Topométrie Chapitre 1
2.1.2. Les surfaces
Plusieurs surfaces sont à considérer lorsque l’on s’intéresse au positionnement géodésique.
La première est bien évidemment la surface topographique. C’est elle qui joue le rôle d’interface entre partie solide et partie liquide ou gazeuse de la Terre. C’est elle que nous connaissons le mieux, d’un point de vue sensoriel et physique, elle est l’objet de nombreuses sciences et techniques.
Le géoïde est la seconde surface à considérer. Elle se définit comme la surface équipotentielle du champ de pesanteur. L’accélération de pesanteur (g) lui est donc normale en tout point. Une excellente réalisation physique de cette équipotentielle est la surface moyenne des mers et océans. Mais sous les continents, l’accès à cette surface ne peut être qu’indirect. On retiendra donc la réalité physique indéniable de cette surface tout en gardant à l’esprit les difficultés que nécessite sa détermination.
Enfin, l’ellipsoïde de révolution représente la dernière surface. Modèle mathématique défini pour faciliter les calculs et pour qu’il soit le plus près possible du géoïde, il peut être local ou global, selon le champ d’application souhaité du système géodésique auquel il est associé (couverture mondiale ou d’un territoire seulement).
2.1.3. Différents types de coordonnées
Les coordonnées d’un point peuvent être exprimées de différentes façons :
• Géographiques : latitude et longitude (valeurs angulaires)
• Cartésiennes : exprimées dans un référentiel géocentrique (valeurs métriques)
• En projection : représentation cartographique plane (valeurs métriques)
Généralement, les coordonnées géocentriques ne servent que d’étape de calcul pour les changements de système géodésique.
Pour résumer :
Plusieurs surfaces sont accessibles au topographe pour déterminer les coordonnées d’un point, qui peuvent être exprimées de façon différentes selon le type d’application. Le lien entre le type de coordonnées et la surface de référence est primordial. Connaître ces deux éléments constitue une obligation pour exploiter la localisation des points.
2.2. Le chang
ement de système géodésique
Le problème est suffisamment courant pour mériter qu’on lui attache un peu d’importance. Même si la quasi totalité des logiciels de SIG, de traitement d’images ou d’import de données GPS sont capables d’effectuer des transformations de système, il semble utile d’en préciser les principes et les méthodes.
Au paragraphe précédent, nous évoquions la notion de champ d’application du système géodésique. Celle-ci prend une grande importance lorsqu’il s’agit de changer de système géodésique. En effet, selon les natures des systèmes de départ et d’arrivée, les méthodes employées diffèrent.
1. Introduction générale
La détermination des coordonnées et de diverses caractéristiques de points dans l’espace occupe une place importante dans la plupart des études à buts environnementaux. L’objectif de ces déterminations est généralement l’étude de l’aspect géographique des inter-relations entre les divers paramètres ou indicateurs relevés.
L’objet de ce cours est de balayer l’ensemble des méthodes et techniques à la disposition des bureaux d’études pour acquérir des informations à la fois géométriques et thématiques sur des objets tri-dimensionnels, qui composent nos paysages urbains et naturels. Il ne s’agit évidemment pas de former des topographes chevronnés, mais bien de donner une culture technique de base pour permettre d’une part un dialogue avec les professionnels et d’autre part, lorsque c’est nécessaire, la mise en oeuvre de protocoles de mesures simples.
Dans une première partie, nous rappellerons les notions géodésiques de base nécessaire à la compréhension de ce cours. Nous nous intéresserons ensuite aux méthodes de détermination directes de la topométrie classique : le nivellement direct et indirect, la triangulation et ses déclinaisons. Nous évoquerons rapidement les notions de précision et d’erreur de mesure. Enfin, nous présenterons les grandes caractéristiques du système GPS, ses capacités et ses modes d’exploitation. Nous terminerons par un aperçu rapide des méthodes de télédétection pour la génération de plans d’information géographique.
1.1. Une carte, un plan pour quoi?
La première question que doit se poser le cartographe ou le topographe est la suivante : quelles sont les informations que l’on souhaite obtenir du terrain ? Ceci doit permettre de définir le plus petit objet qui devra être visible sur la carte ou le plan, conditionnant ainsi l’échelle du document. On en détermine ainsi la teneur en information. Quelques exemples pour illustrer ces propos : nous partirons du principe que le plus petit détail aisément discernable, ainsi que la précision de report manuel, ne peuvent être inférieurs au dixième de millimètre. Ainsi, nous obtenons les relations suivantes entre les échelles classiques des documents et le type de détails représentés :
• Plan de maison → 1/50
• Plan de corps de rue (murs, égouts, trottoirs…) → 1/200 à 1/500
• Plan de lotissement, d’occupation des sols, cadastre → 1/1000 à 1/2000
L’échelle 1/mb d’un document est souvent qualifiée de deux façons différentes et contradictoires : l’une qualifie le coefficient d’échelle mb, et l’autre, le rapport d’échelle. Dans la suite, on se limitera à la seconde qui a le plus souvent cours dans les administrations et les fournisseurs de données.
1.2. Un panel de techniques et méthodes
Afin de décrire le terrain, on dispose de tout un panel de techniques et méthodes qu’il s’agit maintenant d’étudier, dans les grandes lignes. Le propos est, comme précisé plus haut d’en connaître les principes, le moyen de les mettre en oeuvre efficacement pour des travaux restreints, de savoir quand faire appel à un professionnel et d’avoir avec lui un langage commun. Nous verrons comment choisir l’appareil et la technique adaptés au problème qui se pose, aux contraintes de précision de l’étude.
- 4 -
Cours de Topographie et de Topométrie Chapitre 1
2. Notions géodésiques de base
Sans entrer excessivement dans les détails, nous rappelons ici les grandes notions de géodésie sur les systèmes, les surfaces de référence, les grandes familles de projection cartographique…
2.1. Quelques définitions
Les définitions qui suivent sont principalement tirées et inspirées de la notice technique de l’Institut Géographique National, intitulée : Notions géodésiques nécessaires au positionnement géographique (IGN, 2000).
2.1.1. Les paramètres essentiels
La mise en oeuvre de la géodésie et des techniques qui en sont dérivées nécessitent l’existence d’un jeu de paramètres essentiels :
• un système géodésique de référence
• un réseau géodésique de points matérialisés
2.1.1.1. Le système géodésique
Un système géodésique (ou datum géodésique) est un repère affine possédant les caractéristiques suivantes :
• le centre O est proche du centre des masses de la Terre
• l’axe OZ est proche de l’axe de rotation terrestre
• le plan OXZ est proche du plan méridien origine
Les coordonnées géodésiques du point M ne sont pas des valeurs objectives mais bien dépendantes d’un modèle théorique. Un point de la croûte terrestre est considéré fixe par rapport au système géodésique, malgré les petits déplacements qu’il peut subir (marée terrestre, surcharge océanique, mouvements tectoniques). Ainsi, il apparaît la nécessité de disposer d’une surface de référence : l’ellipsoïde.
2.1.1.2. Le réseau géodésique
Un réseau géodésique est un ensemble de points de la coûte terrestre (tels que des piliers, des bornes…) dont les coordonnées sont définies, estimées par rapport à un système géodésique. Plusieurs types de réseaux sont distingués :
• les réseaux planimétriques
• les réseaux de nivellement
• les réseaux tridimensionnels géocentriques
Pour résumer :
Avec le réseau, une réalisation géodésique nécessite donc la mise en oeuvre d’un système géodésique qui peut être résumé par l’ensemble des constantes et algorithmes qui doivent intervenir dans le processus d’estimation des coordonnées. (IGN, 2000)
- 5 -
Cours de Topographie et de Topométrie Chapitre 1
2.1.2. Les surfaces
Plusieurs surfaces sont à considérer lorsque l’on s’intéresse au positionnement géodésique.
La première est bien évidemment la surface topographique. C’est elle qui joue le rôle d’interface entre partie solide et partie liquide ou gazeuse de la Terre. C’est elle que nous connaissons le mieux, d’un point de vue sensoriel et physique, elle est l’objet de nombreuses sciences et techniques.
Le géoïde est la seconde surface à considérer. Elle se définit comme la surface équipotentielle du champ de pesanteur. L’accélération de pesanteur (g) lui est donc normale en tout point. Une excellente réalisation physique de cette équipotentielle est la surface moyenne des mers et océans. Mais sous les continents, l’accès à cette surface ne peut être qu’indirect. On retiendra donc la réalité physique indéniable de cette surface tout en gardant à l’esprit les difficultés que nécessite sa détermination.
Enfin, l’ellipsoïde de révolution représente la dernière surface. Modèle mathématique défini pour faciliter les calculs et pour qu’il soit le plus près possible du géoïde, il peut être local ou global, selon le champ d’application souhaité du système géodésique auquel il est associé (couverture mondiale ou d’un territoire seulement).
2.1.3. Différents types de coordonnées
Les coordonnées d’un point peuvent être exprimées de différentes façons :
• Géographiques : latitude et longitude (valeurs angulaires)
• Cartésiennes : exprimées dans un référentiel géocentrique (valeurs métriques)
• En projection : représentation cartographique plane (valeurs métriques)
Généralement, les coordonnées géocentriques ne servent que d’étape de calcul pour les changements de système géodésique.
Pour résumer :
Plusieurs surfaces sont accessibles au topographe pour déterminer les coordonnées d’un point, qui peuvent être exprimées de façon différentes selon le type d’application. Le lien entre le type de coordonnées et la surface de référence est primordial. Connaître ces deux éléments constitue une obligation pour exploiter la localisation des points.
2.2. Le chang
ement de système géodésique
Le problème est suffisamment courant pour mériter qu’on lui attache un peu d’importance. Même si la quasi totalité des logiciels de SIG, de traitement d’images ou d’import de données GPS sont capables d’effectuer des transformations de système, il semble utile d’en préciser les principes et les méthodes.
Au paragraphe précédent, nous évoquions la notion de champ d’application du système géodésique. Celle-ci prend une grande importance lorsqu’il s’agit de changer de système géodésique. En effet, selon les natures des systèmes de départ et d’arrivée, les méthodes employées diffèrent.
nero05- مشرف
-
رسالة sms :
الهويات :
المهن :
الاعلام :
الجنس :
عدد الرسائل : 820
نقاط التميز : 18074
تاريخ التسجيل : 08/07/2009
رد: cours de topographie
متألق كالعادة
ننتضر المزيد
ننتضر المزيد
Otba- عضو ماسي
-
رسالة sms :
الهويات :
الاعلام :
الجنس :
عدد الرسائل : 401
نقاط التميز : 15750
تاريخ التسجيل : 18/11/2010
مواضيع مماثلة
» Cours d'électrotechnique Cours d'électronique de puissance
» Cours d'électrotechnique
» cours nutritin animales
» cours de physiologie animale
» cours electronique de puissance PDF
» Cours d'électrotechnique
» cours nutritin animales
» cours de physiologie animale
» cours electronique de puissance PDF
صفحة 1 من اصل 1
صلاحيات هذا المنتدى:
لاتستطيع الرد على المواضيع في هذا المنتدى
الخميس يناير 26, 2023 4:51 pm من طرف guerna noureddine
» حضارات ماقبل التاريخ
الخميس نوفمبر 16, 2017 5:36 pm من طرف بن عامر لخضر
» واد سوف على مر الزمان ثاني اكبر معلم تاريخي فالجزائر
الخميس نوفمبر 16, 2017 5:34 pm من طرف بن عامر لخضر
» من أقطابنا لبرج الغدير : زاوية سيدي احسن بلدية غيلاسة دائرة برج الغدير
الثلاثاء نوفمبر 14, 2017 6:38 pm من طرف بن عامر لخضر
» انتشار الامازيغ
الأحد أكتوبر 22, 2017 6:40 am من طرف بن عامر لخضر
» من اقطابنا لبرج الغدير: رحلة في ذكرى 8ماي1945( بئر ميشوبأولاد سي احمد )
السبت أكتوبر 21, 2017 5:56 pm من طرف بن عامر لخضر
» برج الغدير : منارة علم بقرية الدشرة ( مسجد الحاج الشريف )
الأحد أكتوبر 08, 2017 1:09 pm من طرف بن عامر لخضر
» برج الغدير : منارة علم بقرية الدشرة ( مسجد الحاج الشريف )
الأحد أكتوبر 08, 2017 12:57 pm من طرف بن عامر لخضر
» برج الغدير : معلم أثري يكاد يندثر ( الضريح الروماني ببرج الشميسة )
الإثنين أكتوبر 02, 2017 6:42 am من طرف بن عامر لخضر
» مجموعة أطروحات دكتوراه دولة في الإقتصاد.
الجمعة مارس 31, 2017 9:25 pm من طرف yacine ha
» بعض من مؤلفات الدكتور محمد الصغير غانم
الثلاثاء مارس 21, 2017 8:42 am من طرف cherifa cherifa
» ربح المال مجانا من الانترنت
السبت فبراير 25, 2017 9:15 am من طرف mounir moon
» موسوعة كتب الطبخ
الجمعة فبراير 24, 2017 4:43 pm من طرف mounir moon
» cours 3eme année vétérinaire
الجمعة فبراير 24, 2017 4:38 pm من طرف mounir moon
» اين انتم
الإثنين فبراير 13, 2017 2:47 pm من طرف guerna noureddine